Система моделирования СИМУЛИНК и ее возможности

- 1. Назначение СИМУЛИНК
- 2. Мнемоника СИМУЛИНК. Общая характеристика блоков.
- 3. Блоки базового пакета СИМУЛИНК: дифференцирование, интегрирование, блоки математических операций, блоки пользовательских функций, блоки отображения результатов связь с рабочей областью МАТЛАБ.

Практические занятия

п 1 Вычислить значение интегралов

$$\int_{0}^{\pi} \frac{\sin x}{\sqrt{1 + \sin^2 x}} \ln \sin x dx = -0.2722$$

$$\int_{0}^{\pi} \frac{\sin^3 x}{\sqrt{1 + \sin^2 x}} \ln \sin x dx = -0.0767$$

$$\int_{0}^{\infty} \frac{\ln|\cos x|}{x^2} dx = -1.57$$

$$\int_{0}^{\infty} \frac{tgx}{x} \ln|\cos x| dx = -1.0888$$

$$\int_{0}^{\infty} x^{2} \frac{e^{x} - e^{-x} + 2}{\left(e^{x} - 1\right)^{2}} dx = 4.5797$$

$$\int_{0}^{\infty} \frac{x dx}{e^x + e^{-x} - 1} = 1.17195$$

$$\int_{0}^{\infty} \frac{xe^{-x}dx}{e^x + e^{-x} - 1} = 0.311821$$

$$\int_{0}^{\infty} \left(\frac{e^{-2x}}{2} - \frac{1}{1 + e^{x}} \right) \frac{dx}{x} = -0.5724$$

$$\int_{0}^{\infty} \left(\frac{e^{-x}}{2} - \frac{1}{1 + e^{x}} \right) \frac{dx}{x} = -0.2254$$

- 4. Решение простейших ОДУ. Основные приемы.
- 5. Решение уравнений первого порядка с использованием блока интегратор.
- п2. Решить дифференциальные уравнения первого порядка

Варианты

Nº	Уравнение	x_0	x_{end}	$y(x_0)$	Точное решение
	$y' + y \operatorname{tg} x = \sec x$	0	1,5	1	$y = \sin x + \cos x$
2	$x^2y' + xy + 1 = 0$	1	3	1 .	$xy = 1 - \ln x $
3	(2x+1)y'=4x+2y	0	4	1	$y = (2x+1) \ln 2x+1 +$
4	$x(y'-y)=e^x$	1	3	e	$y = e^x(\ln x + 1)$
5	$y = x(y' - x\cos x)$	$\pi/2$	2π	$\pi/2$	$y = x \cdot \sin x$
6	$y' = 2x(x^2 + y)$	-1 %	2	e	$y = e^{x^2} - x^2 - 1$
7	$(xy'-1)\ln x = 2y$	1	3	0	$y = \ln^2 x - \ln x$
8	$xy' + (x+1)y = 3x^2e^{-x}$	1	5	1/e	$y = x^2 e^{-x}$
9	$y' + 2y = y^2 e^x$	-1	1	e	$y=e^{-x}$
10	$(x+1)(y'+y^2) = -y$	1	5	$(2 \ln 2)^{-1}$	$ y(x+1)\ln x+1 = 1$
	$xy^2y'=x^2+y^3$	1	3	0	$y^3 = 3x^2(x-1)$
12	$xy' - 2x^2\sqrt{y} = 4y$	1	2	0	$y = x^4 \ln^2 x$
13	$xy' + 2y + x^5y^3e^x = 0$	1	2	$(2e)^{-1/2}$	$2y^2x^4e^x=1$
14	$2y' - \frac{x}{y} = \frac{xy}{x^2 - 1}$	1,1	4		$y^2 = x^2 - 1$
	$(1+x^{2})y'-2xy=(1+x^{2})^{2}$	0	2	0	$y = x(1+x^2)$
54					

- 6. Дифференциальные уравнения высших порядков. Метод решения путем сведения к системе уравнений первого порядка.
- п3. Решить Дифференциальные уравнения второго порядка
- п3.1 Уравнение колебаний математического маятника

$$\frac{d^2\varphi}{dt^2} + \varphi^2 ctg\varphi + \frac{g}{l}\sin\varphi = 0, \quad \varphi(0) = \pi/3$$

п.3.2 Уравнение Ван-дер Поля

$$\frac{d^2x}{dt^2} + \varepsilon \left(-\frac{dx}{dt} + \frac{1}{3} \left(\frac{dx}{dt} \right)^3 \right) + x = 0, \quad x(0) = 0.1, \ \dot{x}(0) = 0, \ \varepsilon = 0.1, \ 0.5, \ 1$$

п.3.3 Уравнение Дюффинга

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} + (\alpha x + x^3) = \cos t, \quad x(0) = 0, \quad \alpha = 1, 0, -1$$

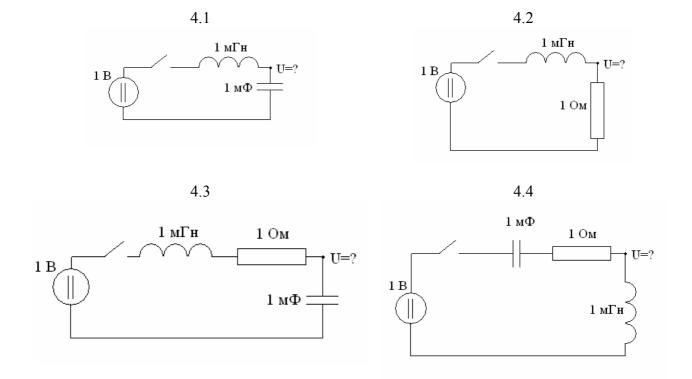
п.3.4 Уравнение затухающих колебаний (Месснер)

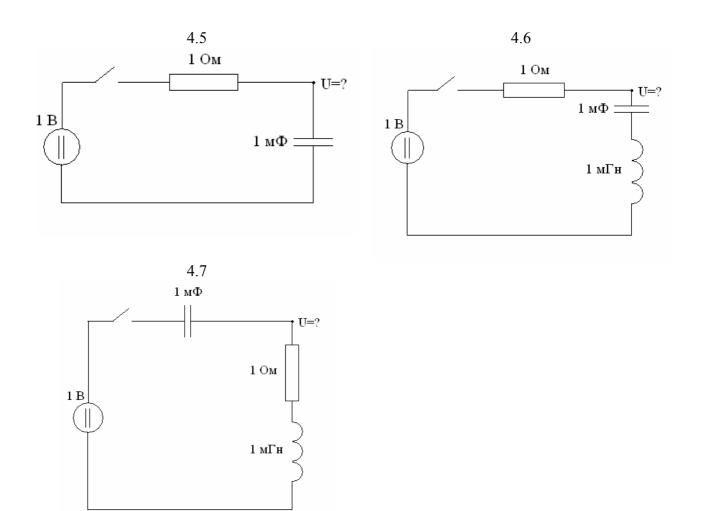
$$\frac{d^2x}{dt^2} + F\left(\frac{dx}{dt}\right) + x = 0, \quad x(0) = 0, \ \dot{x}(0) = 10, \ r = 0.25, \ 0.5, 1$$

$$F(\dot{x}) = \begin{cases} r & \dot{x} > 0 \\ -r & \dot{x} < 0 \end{cases}$$

п.3.5 Уравнение плазменных колебаний электронов

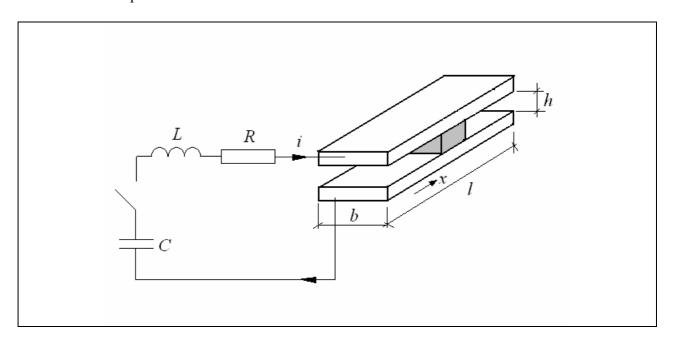
$$\frac{d^2x}{dt^2} + \frac{4\pi ne^2}{m}x = 0, \ \dot{x}(0) = \sqrt{\frac{3kT}{m}}, \quad T = 50000, \quad n = 10^{20}$$


п.3.6 Уравнение деформационных колебаний при соударении шаров


$$\frac{d^2x}{dt^2} + kx^{3/2} = 0, \ k = 4 \cdot 10^4, \ \dot{x}(0) = 10$$

п.3.7 Уравнение деформационных колебаний при упругопластическом соударении шаров

$$\frac{d^2x}{dt^2} + kx^{3/2} = 0, \ k = 4 \cdot 10^4 \exp(-10^5 x), \ \dot{x}(0) = 10$$


 Π .4 С помощью блока "Передаточная функция " получить осциллограмму напряжения в указанных точках следующих схем

Построить модель рельсового ускорителя твердых тел с питанием от емкостного накопителя энергии

П.5

Система уравнений, описывающая процессы в ускорителе состоит из группы уравнений электромагнитных переходных процессов

$$C\frac{dU_c}{dt} = -i$$
,

$$L\frac{di}{dt} + Ri + \frac{d\psi}{dt} = U_C,$$

где C , L , R - емкость, индуктивность и активное сопротивление накопителя, U_{c} -

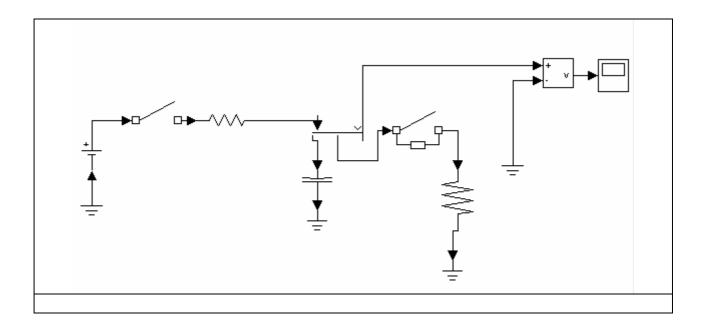
напряжение на батарее конденсаторов, i - ток в цепи накопителя, $\psi = \frac{\mu_0 x h}{h} i$ -

магнитный поток в рельсовом ускорителе и уравнений движения, - размеры канала ускорения,

$$m\frac{dv}{dt} = \frac{1}{2}i^2\frac{d}{dx}\left(\frac{\psi}{i}\right),$$

$$\frac{dx}{dt} = v$$
,

где m, x, v - масса, координата и скорость ускоряемого тела.


При разработке модели систему следует преобразовать к каноническому виду и использовать блоки типа интегратор. Для прекращения моделирования в момент выхода тела из канала ускорения использовать блок "stop".

Варианты заданий

No	С, Ф	L, Гн	R, Om	U _c (0), кВ	т, кг	1, м	h/b
1	10 ⁻⁴	10 ⁻⁶	10 ⁻³	7	0.01	0.2	1
2	4*10 ⁻⁴	10 ⁻⁶	10 ⁻³	5	0.01	1	1
3	10 ⁻³	10 ⁻⁵	10 ⁻⁴	10	0.1	1	1
4	5*10 ⁻³	10 ⁻⁵	10 ⁻⁴	12	0.1	2	1
5	2*10 ⁻³	10^{-6}	10 ⁻³	10	0.05	0.75	1
6	10 ⁻⁵	10 ⁻⁶	10 ⁻³	7	0.009	0.15	1
7	8*10 ⁻⁶	10 ⁻⁶	10 ⁻³	7.5	0.009	0.5	1

П6 Использование пакетов расширения (SimPowerSystem)

1. Зарядка емкости

2. Релаксационный генератор ■ Normal □ → ⊕ cal dAT Fund olo ho Voltage Measu ho u[1]>60 Fon cal Scope 6 1 0 0 0 A B B 9 6 T ode15s 2 of block 'untitled/Bus Bar (thin ho essing untitled ... 2 of block 'untitled/Bus Bar (thin ho 0.05 0.15 0.2 0.3